If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-24X-3840=0
a = 1; b = -24; c = -3840;
Δ = b2-4ac
Δ = -242-4·1·(-3840)
Δ = 15936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15936}=\sqrt{64*249}=\sqrt{64}*\sqrt{249}=8\sqrt{249}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-8\sqrt{249}}{2*1}=\frac{24-8\sqrt{249}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+8\sqrt{249}}{2*1}=\frac{24+8\sqrt{249}}{2} $
| (x+1)^2=(2x-4)+18 | | 24=u/3 | | 5k-0=5 | | 2/7x-20=6 | | 3a+7=2a-5a | | 13-8x=23 | | 1.28=x-70/10 | | 2x/5-9=33 | | x10^(0.03)=1.3 | | 8-y/9=0 | | 5-2x=14-x | | 5+2x=x+14 | | -22-5x=6x-9 | | 4x-7=5+2 | | 9=-3-x | | 9-2t=5 | | 8t+6=3-2(t+2) | | 2x-x2=3 | | 0.5(x+20)+0.1x=19 | | 5t-4=2t+1 | | 5x−2=3x+4 | | 120x-360=6000-180x | | x+0.09x=10568.64 | | 120x+360=6000-180x | | 10+x/3=2x | | -(1)/(2)(36a-6)=(3)/(4)(4-24a) | | 32-4(4x+7)=32-16x+28 | | 3x+6-10=2x+2 | | 5(3y-2(2y+5))+y+28=0 | | 7x+13-(13+15+13)-(125-853)+12-13*89+789=13x | | 120x-260=6000-180x | | 120x+260=6000-180x |